

SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIPS OF CP-122,721, A SECOND-GENERATION NK-1 RECEPTOR ANTAGONIST

Terry J. Rosen, ^a Karen J. Coffman, ^a Stafford McLean, ^a Rosemary T. Crawford, ^a Dianne K. Bryce, ^a Yoshiko Gohda, ^b Megumi Tsuchiya, ^b Atsushi Nagahisa, ^b Masami Nakane, ^b and John A. Lowe, III ^a

^a Central Research Division, Pfizer Inc. Groton, CT 06340

^b Central Research Division, Pfizer Inc., 5-2 Taketoyo, Aichi 470-23, Japan

Received 23 October 1997; accepted 22 December 1997

Abstract: The synthesis and SAR of benzylamine side chain analogs of the NK-1 receptor antagonist CP-99,994 are described. The 5-trifluoromethoxy analog, CP-122,721, shows superior *in vivo* blockade of NK-1 receptor mediated responses. © 1998 Elsevier Science Ltd. All rights reserved.

The structure-activity relationships (SAR) of the potent NK-1 receptor antagonist CP-99,994 (1)¹ and its pharmacological characterization² suggested that structural modification might improve its *in vivo* activity. For example, despite CP-99,994's subnanomolar affinity for the NK-1 receptor, blockade of capsaicin-induced protein plasma extravasation in the guinea pig requires an oral dose of 5 mg/kg. One possible pharmacokinetic shortcoming of CP-99,994 is metabolic lability due to demethylation of/para-hydroxylation to the methoxy group on the phenyl ring of the benzylamine side chain. Herein, we report that modification of the benzylamine phenyl ring with a 5-trifluoromethoxy group provides CP-122,721 (3f), a compound with superior *in vivo* efficacy in animal models of NK-1 receptor antagonism, warranting its designation as a "second generation" NK-1 receptor antagonist.

0960-894X/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. *PII:* S0960-894X(98)00012-2

To whom correspondence should be addressed.

The synthesis of the benzylamine analogs of 1 and their SAR are summarized in Scheme 1. Debenzylation of CP-99,994 using catalytic platinum, followed by reductive amination with the appropriate aldehyde, afforded the desired analogs. As indicated in the SAR table, the most significant increase in NK-1 receptor affinity in this series is afforded by the analogs containing a substituent opposite (or *para*) to the 2-methoxy group. Since it has one of the highest NK-1 receptor affinities in this series, compound 3f with the 5-trifluoromethoxy group was selected for further evaluation.³ Analogs of 3f at the 2-position (compounds 3i to 3k), did not afford improved NK-1 receptor affinity.

Scheme 1	NH OCH ₃ H ₂	NaCHBH, MeOH	X NH OR
1, (CP-99,994	2	3
<u>CPD</u>	<u>X</u>	<u>R</u>	<u>NK-1</u> <u>IC</u> 50, <u>nM</u> *
CP-99,994	Н	СН3	0.49 ± 0.39
3a	Н	CH(CH ₃) ₂	0.46 ± 0.49
3b	Н	CHF ₂	0.41 ± 0.33
3c	Н	CF3	0.80 ± 0.38
3d	Cl	CH ₃	0.14 ± 0.10
3e	OCH ₃	CH ₃	0.09 ± 0.08
3f	OCF3	CH ₃	0.19 ± 0.07
3 g	N(CH ₃) ₂	CH ₃	0.56 ± 0.23
3h	N(CH ₃)SO ₂ CH	3 CH ₃	0.11 ± 0.02
3i	OCF3	Н	10.87 ± 4.47
3ј	OCF3	CH ₂ CH ₃	0.14 ± 0.15
3k	OCF3	CH(CH ₃) ₂	0.18 ± 0.07
Substance P			0.61 ± 0.11

^{*}IC50 value for displacement of [3H]Substance P in human IM-9 cells, ± S.D.

Although 3f shows only a small improvement in NK-1 receptor affinity relative to 1, its *in vivo* efficacy is considerably improved in several assays. For example, the ID₅₀ value of 3f for blockade of locomotor activity in the guinea pig elicited by icv administered Sar⁹Met(O₂)-SP is 0.01 mg/kg sc, while for 1 the corresponding value is 0.6 mg/kg sc.⁵ Against SP-induced plasma extravasation in the guinea pig, 3f shows an ID₅₀ value of 0.05 mg/kg po, compared with a value of 31 mg/kg po for 1. Capsaicin is a naturally-occurring substance that releases endogenous SP, eliciting SP-induced responses *in vivo*. Compound 3f blocks capsaicin-induced plasma extravasation in the guinea pig ureter with an ID₅₀ value of 0.02 mg/kg po as compared with 2.9 mg/kg po for 1. In addition, aerosolized capsaicin-induced plasma protein extravasation in guinea pig lung is blocked by 3f (ID₅₀ = 0.01 mg/kg po) more potently than by 1 (ID₅₀ = 5 mg/kg po). Finally, 3f suppresses retching and vomiting induced by a broad range of emetogens in the ferret, being approximately three-fold more potent than 1 in these models. For example, 3f blocks cisplatin-induced emesis with an ID₅₀ of 0.08 mg/kg when given orally. The significant increase in efficacy of 3f for blockade of SP-induced effects *in vivo* relative to 1 together with its potent anti-emetic activity qualify 3f as a second generation NK-1 receptor antagonist. The clinical potential of 3f is currently under evaluation. Recently, a similar approach to improving the *in vivo* activity of CP-99,994, using a 5-tetrazolyl substituent, was reported.

References and Notes

- Desai, M. C.; Lefkowitz, S. L.; Thadeio, P. F.; Longo, K. P.; Snider, R. L. J. Med. Chem. 1992, 35, 4911.
- McLean, S.; Ganong, A.; Seymour, P. A.; Snider, R. M.; Desai, M. C.; Rosen, T.; Bryce, D. K.;
 Longo, K. P.; Reynolds, L. S.; Heym, J. J. Pharmacol. Exp. Ther. 1993, 267, 472.

- Analytical data for 3f as its hydrochloride salt: mp 277-278° C, HRMS calcd for C₂₀H₂₃F₃N₂O₂:
 380.1711. Found: 380.1704. Anal. calcd for C₂₀H₂₃F₃N₂O₂·2HCl: C 52.99, H 5.55, N 6.18.
 Found: C 52.85, H 5.60, N 6.12, α_D = +71.2° (c 1.09, MeOH).
- 4. The procedure for [3H]SP binding to human IM-9 cells that was used for SAR evaluation was based on the literature protocol of Payan, D. G.; Brewster, D. R.; Goetzl, E. J. *J. Immunol.* 1984, 133, 3260. IM-9 human lymphoblast cells (ATCC) were harvested by centrifugation, washed in ice-cold 20 mM Hepes-Hanks (pH 7.4) buffer and resuspended in assay buffer (50 mM Tris buffer, pH 7.4, 1 mM MgSO4, 0.02% bovine serum albumin (BSA), 10 μM leupeptin, and 10 μM phosphoramidon). Incubations were initiated by adding cell suspension (3 x 10⁶ cells/tube) to buffer containing [3H]SP (tritiated substance P) (0.56 nM final concentration) and various concentrations of inhibitors. After 120 min at 4° C, the incubations were terminated by filtration onto Whatman GF/B filters (presoaked in 0.2% polyethylenimine (PEI) for 2 h) followed by three washes with ice-cold buffer. Filter-bound radioactivity was determined by a Beckman LS-5801 liquid scintillation counter. Nonspecific binding was defined as the radioactivity remaining in the presence of 1 μM SP.
- McLean, S.; Ganong, A.; Seymour, P. A.; Bryce, D. K.; Crawford, R. T.; Morrone, J.; Reynolds, L. S.; Schmidt, A. W.; Zorn, S.; Watson, J.; Fossa, A.; DePasquale, M.; Rosen, T.; Nagahisa, A.; Tsuchiya, M.; Heym, J. J. Pharmacol. Exp. Ther. 1996, 277, 900.
- 6. Gonsalves, S.; Watson, J.; Ashton, C. Eur. J. Pharmacol. 1996, 305, 181.
- Ward, P.; Armour, D. R.; Bays, D. E.; Evans, B.; Giblin, G. M. P.; Heron, N.; Hubbard, T.; Liang, K.; Middlemiss, D.; Mordaunt, J.; Naylor, A.; Pegg, N. A.; Vinader, M. V.; Watson, S. P.; Bountra, C.; Evans, D. C. J. Med. Chem. 1995, 38, 4985.